Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cureus ; 16(2): e53402, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38440006

RESUMO

BACKGROUND: The MRI-based vertebral bone quality (VBQ) score is an assessment tool for bone mineral density (BMD) that has been validated in adults against the clinical standard of dual-energy X-ray absorptiometry (DEXA). However, VBQ has yet to be validated against DEXA for use in adolescents. This study evaluated the associations between adolescent VBQ scores, DEXA Z-scores, and BMD values. METHODS: The radiographic records of 63 consecutive patients between the ages of 11 and 21 who underwent MRI of the abdomen and pelvis and DEXA of the spine and hip were retrieved. The collected radiographic data consisted of the MRI-based VBQ score, DEXA Z-score, and BMD values of the femoral neck, L1-4 vertebrae, and total body. The VBQ score was calculated by taking the median signal intensity (MSI) from L1-L4 and the SI of the L3 cerebrospinal fluid (CSF). The VBQ score was derived as the quotient of MSIL1-L4 divided by SICSF. RESULTS: A mean VBQ score of 2.41 ± 0.29 was observed. Strong correlations of -0.749 (p<0.0001) and -0.780 (p<0.0001) were detected between the VBQ score and DEXA femoral neck and spine Z-scores, respectively. Correlations between VBQ score and DEXA femoral neck, spine, and total body BMD scores were -0.559 (p<0.0001), -0.611 (p<0.0001), and -0.516 (p<.0001), respectively. No significant correlations were found between the VBQ score and age, BMI, weight, or height. A mean difference in VBQ score of -0.155 (p=0.035) was observed between sexes. VBQ demonstrated moderate predictive ability for DEXA-derived Z-scores and BMD scores. CONCLUSIONS: VBQ scores were strongly correlated with DEXA Z-scores and moderately correlated with BMD values. The VBQ score can also be used by adolescent patients as an accessory tool to assess bone health.

2.
J Clin Neurosci ; 120: 23-28, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171097

RESUMO

OBJECTIVE: Bone mineral density assessment using Hounsfield Unit (HU) currently depends upon the availability of computed tomography (CT) of the lumbar spine. The primary aim of this study was to evaluate the associations among HU measurements of the cervical (CHU), thoracic (THU), and lumbar (LHU) spine. The secondary aim of this study was to analyze the influence of patient demographic and anthropometric characteristics on HU measurements. METHODS: Radiographic records of 165 patients who underwent CT of the cervical, thoracic, and lumbar spine were retrieved. The CHU, THU, and LHU were calculated by obtaining the mean signal intensity from the medullary portions of C3-C7, T8-T12, and L1-L4 vertebral bodies. RESULTS: Mean CHU, THU, and LHU values were 266.26 ± 88.69, 165.57 ± 55.06, and 166.45 ± 51.38. Significant differences of 100.69, 99.81, and 0.88 were observed between CHU and THU (p <.001), CHU and LHU (p <.001), and THU and LHU (p =.023). Correlations of 0.574, 0.488, and 0.686 were observed between CHU and THU (p <.001), CHU and LHU (p <.001), and THU and LHU (p <.001). No differences in HU based on sex, age, height, weight, or ethnicity were observed. Multivariate regression models demonstrated R2 values of 0.770 - 0.790 (p <.001) in prediction of LHU. CONCLUSIONS: Hounsfield Unit measurements derived from the cervical and thoracic spine correlate with the validated lumbar Hounsfield Unit. Hounsfield Unit measurements do not vary based on sex, ethnicity, age, height, or weight.


Assuntos
Densidade Óssea , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Vértebras Lombares/diagnóstico por imagem , Pescoço , Região Lombossacral , Estudos Retrospectivos
3.
J Bone Joint Surg Am ; 105(19): 1512-1518, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37471568

RESUMO

BACKGROUND: Although the radiographic parameters for diagnosing central lumbar canal stenosis are well described, parameters for the diagnosis of neuroforaminal stenosis (NFS) are less well defined. Previous studies have used magnetic resonance imaging (MRI) and radiography to describe neuroforaminal dimensions (NFDs). Those methods, however, have limitations that may substantially distort measurements. Existing literature on the use of computed tomography (CT) to investigate normal NFDs is limited. METHODS: This anatomic assessment evaluated CT imaging of 300 female and 300 male subjects between 18 and 35 years of age to determine normal NFDs, specifically the sagittal anteroposterior width, axial anteroposterior width, craniocaudal height, and area. Statistical analyses were performed to assess differences in NFDs according to variables including sex, age, height, weight, body mass index, and ethnicity. RESULTS: Overall, mean NFDs were 9.08 mm for sagittal anteroposterior width, 8.93 mm for axial anteroposterior width, 17.46 mm for craniocaudal height, and 134.78 mm 2 for area (n = 6,000 measurements each). Male subjects had larger NFDs than females at multiple levels. Both Caucasian and Asian subjects had larger NFDs than African-American subjects at multiple levels. There were no associations between foraminal dimensions and anthropometric factors. CONCLUSIONS: This study describes CT-based L1-S1 NFDs in young, healthy patients who presented with reasons other than back pain or pathology affecting the neuroforamen. Dimensions were influenced by sex and ethnicity but were not influenced by anthropometric factors. LEVEL OF EVIDENCE: Diagnostic Level III . See Instructions for Authors for a complete description of levels of evidence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA